Germanium v2.0.11

Web Testing API that doesn't disappoint

Table of Contents

Installation
Germanium Drivers
GERMANIUM_DRIVERS_FOLDER
GERMANIUM_USE_PATH_DRIVER
GERMANIUM_USE_IE_DRIVER_FOR_PLATFORM
Germanium Static
open_browser()
close _browser()
go_to(url)
type_keys(keys, selector, delay)
click(selector_or_point)
hover(selector_or_point)
double_click(selector_or_point)
right_click(selector_or_point)
drag_and_drop(from_selector_or_point, to_selector_or_point)
select(selector, text?, index?, value?)
deselect(selector, text?, index?, value?)
select_file(selector, file_path, path_check=True)
parent_node(selector)
child_nodes(selector, only_elements=True)
get_value(selector)
get_text(selector)
get_attributes(selector)
get_style(selector, name)
get_web_driver()
get_germanium()
highlight(selector, show_seconds=2)
def S(*argv, **kwargs)
def iframe(target, keep_new_context = False)
wait(closure, while not=None, timeout=10)
waited(closure, while_not=None, timeout=10)
Germanium Selectors and Locators
Locators Overview
String Selectors
Selectors Overview
Writing Custom Selectors
Selectors Positional Filtering
selector.left_of(other_selector)

O © 0 3 9 O o U1 U B b bk wWww NN DN DN e

[T N T S S e N N Y Y
= R O O 00NN o Ul Ul R R W W NN R RO

selector.right_of(other_selector)
selector.above(other_selector)
selector.below(other_selector)

Selectors DOM Filtering
selector.containing(selector..)
selector.containing_all(selector..)
selector.inside(selector..)
selector.outside(selector..)
selector.without_children()

Germanium Selectors in Static Contexts
selector.element()
selector.element_list()
selector.exists()
selector.not_exists()
selector.text()

Utility Selectors
Css(locator)

XPath(locator)
JsSelector(code)
AnyOfSelector(selectors...)

Provided Selectors
Element(tag_name=None, ...)
Button(search_text = None, text = None, name = None)
Input(input_name)
InputText(input_name)
Link(search_text, text, search_href, href)
Text(text, exact=False, trim=False)

Point Support
Point(x, y)

Box(selector)

Germanium Keys Support
Regular Typing
Special Keys
Combo Presses
Press-Release Key

Germanium API Documentation
@iframe - germanium iframe decorator
germanium Instance Functions
germanium Instance Attributes

germanium Utility Functions

21
22
22
23
23
23
24
24
24
26
26
26
27
27
28
29
29
29
29
29
30
30
30
31
31
31
31
33
33
33
36
36
36
36
37
38
38
39
43
43

Installation

To install it just run:
pip install germanium

You don’t need any binary drivers installed, or any other dependencies, since they are bundled (and
tested) by Germanium itself.

Writing a test then becomes as easy as:

from germanium.static import *
from time import sleep

open_browser("ff")
go_to("http://www.google.com")
type_keys("germanium pypi<enter>", Input(“q"))
wait(Link("Python Package Index"))
click(Link("Python Package Index"))

sleep(5)

close _browser()

Germanium supports Python 2.7, 3.4 and 3.5, and is already used in production tests.

Browsers supported are:

e JE 8+
e Chrome
e Firefox

* Edge

Germanium Drivers

Starting with version 1.8 Germanium also packages the WebDriver binary drivers inside, and will
unpack them when starting a new browser.

Thus when using Germanium it’s not required anymore to have the drivers downloaded.

GERMANIUM_DRIVERS_FOLDER

Path where to unpack the drivers if they are missing, or if a wrong version is detected. If it’s not set
Germanium will create a folder in the temp folder named germanium-drivers.

export GERMANIUM_DRIVERS_FOLDER=/opt/germanium-drivers

GERMANIUM_USE_PATH_DRIVER

If there is a driver for the current browser in the PATH, even if the version of the driver is
unsupported, use that one instead the embedded binary driver that Germanium ships.

If an unsupported driver is found, Germanium will still use its internal driver.

export GERMANIUM_USE_PATH_DRIVER=1

GERMANIUM_USE_IE_DRIVER _FOR_PLATFORM

The IE driver for 64 bit has known issues, so if Germanium needs an IE driver will implicitly use the
32 bit version.

export GERMANIUM_USE_IE_DRIVER_FOR_PLATFORM=1

Germanium Static

The Germanium static package is for creating tests that revolve around running a single browser
instance at a time, in the whole test process.

open_browser()

Description
Opens the given browser instance.

Signature

def open_browser(browser="firefox", @
wd=None, @
iframe_selector=DefaultIFrameSelector(), ®
screenshot_folder="screenshots", @
scripts=list()) ®

@ browser - The browser is case insensitive and can be one of:
1. "ff" or "firefox" - to start Mozilla Firefox
2. "chrome" - to start Google Chrome
3. "ie" - to start Microsoft Internet Explorer
@ wd - A specific already created WebDriver instance can also be given, and then the browser

parameter will be ignored.

® iframe_selector - The strategy to use when finding the execution iframe, whenever the active
iframe name changes.

@ screenshot_folder - Folder under browser screenshots are saved.

® scripts - A list of JavaScript resources to be loaded whenever a page is newly loaded.

Sample
open_browser("firefox")

This also allows connecting to remote selenium instances, for example:
open_browser("ff:http://10.2.1.1:5555/wd/hub")

In case you want to pass capabilities into the remote driver instance, Germanium allows that by
using simple query strings:

open_browser("ie?wdurl=http://10.2.1.1:4444/wd/hub&version=9")

The wdurl is the parameter that will specify the WebDriver URL to use when connecting to the
remote instance.

close browser()

Description
Close the currently running browser instance that was opened with open_browser ()

Signature
def close_browser()
Sample

close _browser()

go_to(url)
Description

Go to the given URL, and wait for the page to load. After the page will load, the scripts provided in
the creation of the GermaniumDriver object will be automatically loaded.

Signature

def go_to(url) @

@ url - The URL to load in the browser.

Sample

go_to("http://google.com/")

type_keys(keys, selector, delay)
Description
Type the keys specified into the element, or the currently active element.

Signature

def type_keys(keys, @
selector=None, @
delay=0) ®

@ keys - the keys to press. See the Germanium Keys Support, to learn about having multiple
keypresses, combo key presses, or repetitions.

@ selector - optional For what element to send the keys. In case it’s missing, sends the keys to the
active element. See the Germanium Selectors, to learn about how you can easily locate the
element you want your action to be triggered against.

® delay - optional Delay in seconds between each keypress.

Sample

type_keys('john.doe@example.com', Input('email')) @
type_keys("<tab*2><enter>") @

@ Type in the input with the name attribute equal to email.

@ Type in the currently active element in the current iframe.

click(selector_or_point)
Description
Click the element with the given selector, or at the specified point position.

Signature

def click(selector_or_point) @

@ selector_or_point - What element to click. See the Germanium Selectors and Point Support, to
learn about how you can easily locate the element you want your action to be triggered against.

Sample

click(Button('0K"))

hover(selector_or_point)
Description
Hovers (sends a mouse over) the element with the given selector, or at the specified point position.

Signature

def hover(selector_or_point) @

@ selector_or_point - What element to hover. See the Germanium Selectors and Point Support, to
learn about how you can easily locate the element you want your action to be triggered against.

Sample

hover (Element('div', id="menul"))

double_click(selector_or_point)
Description
Double clicks the element with the given selector, or at the specified point position.

Signature

def double_click(selector_or_point) @

@ selector_or_point - What element to double click. See the Germanium Selectors and Point
Support, to learn about how you can easily locate the element you want your action to be
triggered against.

Sample

double click(Element('div', css_classes="table-row'))

right_click(selector_or_point)
Description
Right clicks the element with the given selector, or at the specified point position.

Signature

def right_click(selector_or_point) @

@ selector_or_point - What element to right click. See the Germanium Selectors and Point
Support, to learn about how you can easily locate the element you want your action to be
triggered against.

Sample

right_click(Element('div', css_classes="table-row'))

drag_and_drop(from_selector_or_point,
to_selector_or_point)

Description

Performs a drag and drop operation from the element matching the from_selector_or_point, to the
element matching the to_selector_or_point.

Both from_selector_or_point and to_selector_or_point can as the name suggest be either selectors,
or point locations, and are not required to have the same type. You can start a drag from a selector,
to a point, or vice-versa.

Signature

def drag_and_drop(from_selector_or_point, @
to_selector_or_point) @

® from_selector_or_point - What element to use for drag start. See the Germanium Selectors and
Point Support, to learn about how you can easily locate the element you want your action to be
triggered against.

@ to_selector_or_point - What element to release the mouse over. See the Germanium Selectors
and Point Support, to learn about how you can easily locate the element you want your action to
be triggered against.

Sample

drag_and_drop(Element("div", css_classes="old-entry", index=2),
"#iremoveContainer")

select(selector, text?, index?, value?)

Description
Change the value of a <select> element by selecting items from the available options.

Signature

def select(selector, @
text=None, @
*argv,
index=None, ®
value=None, @
**kw)

@ selector - What select to change its values. See the Germanium Selectors, to learn about how you
can easily locate the element you want your action to be triggered against.

@ text - What text(s) (if any) to use for selection.
® index - What index(es) (if any) to use for selection.

@ value - What value(s) (if any) to use for selection.

One of text, index or value must be present for the selection to function, if none are present an
Exception will be raised.

text, index and value can also be arrays, or single values.

Sample

select("#country", "Austria")

deselect(selector, text?, index?, value?)

Description
Change the value of a <select> element by deselecting items from the available options.

Signature

def deselect(selector, @®
text=None, @
*arqv,
index=None, ®
value=None, @
**kW)

@ selector - What select to change its values. See the Germanium Selectors, to learn about how you
can easily locate the element you want your action to be triggered against.

@ text - What text(s) (if any) to use for deselection.
® index - What index(es) (if any) to use for deselection.

@ value - What value(s) (if any) to use for deselection.

Deselect will deselect all the items from the text, index and value parameters. If all the parameters
are unset, it will clear the selection.

text, index and value can also be arrays, or single values.

Sample

deselect("#products”, index=[1,3])

select_file(selector, file_path, path_check=True)

Description

Selects the file into a file input from the disk. The file itself must exist on the system where the
browser is running.

Signature

select_file(selector, @
file_path, @
path_check=True) ®

@ selector - What file input to select the file for. See the Germanium Selectors, to learn about how
you can easily locate the element you want your action to be triggered against.

@ file_path - Path to the file that should be selected in the file input.

® path_check - Check if the file exists, and convert it to an absolute path for the upload.

In case the path_check is unset, any path will be sent to the driver without any validation. This is
useful for uploading files on a remote WebDriver browser.

WebDriver requires the path to be absolute. Germanium will convert the path to an absolute
location only it path_check is set to True.

Sample

Selecting for upload a relative path:

select_file(InputFile(),
'features/steps/test-data/upload_test_file.txt')

Selecting for upload a path that is available only remotely:

select_file(InputFile(),
r"c:\features\steps\test-data\upload_test_file.txt",
path_check=False)

parent_node(selector)
Description
Gets the parent node of the given selector.

Signature

parent_node(selector) @

@ selector - What element to return the value for. See the Germanium Selectors, to learn about
how you can easily locate the element you want your action to be triggered against.

This will return a WebElement.

Sample
e = parent_node('#some_element")

Will return the parent node for the element with the ID some_element that will be matched by the
CSS locator.

child_nodes(selector, only_elements=True)
Description
Gets the child nodes of the element that is matched by selector.

Signature

child_nodes(selector, @
only_elements=True) @

@ selector - What element to return the value for. See the Germanium Selectors, to learn about
how you can easily locate the element you want your action to be triggered against.

@ only_elements - If to return only elements, or also other node types (text, comment, etc)
This will return a list of the found elements, or an empty list if no element was found.
Sample

For example for the given HTML:

<div id="parent">
<div id="child1">..</div>
<div id="child2">..</div>
</div>

When calling:

items = child_nodes("#parent")
assert len(items) ==

10

This will return a list of 2 elements, with the child1 and child2, since only_elements is set by default
to true. Otherwise if setting the only_elements to False, the call will return 5 elements, since there
are 3 whitespace nodes in the #parent div.

items = child_nodes('#parent’', only_elements=False)
assert len(items) ==

get_value(selector)
Description
Gets the value of an input element. Works for: <input> and <select> elements.

Signature

get_value(selector) @

@ selector - What element to return the value for. See the Germanium Selectors, to learn about
how you can easily locate the element you want your action to be triggered against.

get_value will return the current value of the element.

If the element is a multi-select, it will return an array of the values which were selected (the value
attribute of the <option> elements that are selected).

Sample

assert get_value('#country') == 'at'

get_text(selector)

Description

Gets the text from the element. This is equivalent to the innerText, or textContent element attribute
of the browser.

Signature

get_text(selector) @

@ selector - What element to return the text for. See the Germanium Selectors, to learn about how
you can easily locate the element you want your action to be triggered against.

If the selector is a WebElement instance, the filtering of only_visible will not be used, and the text
from the given element will still be returned.

11

This is in contrast with the default Selenium approach of returning empty text for elements that are
not visible.

Sample
get_text(invisible_element)
or

assert 'yay' == get_text('.success-message') @

@ This might throw exceptions if the .success-message is an element that is invisible, or doesn’t
exists.

get_attributes(selector)

Return all the attributes of the element matched by the selector as a dictionary object.

For example for this HTML:

<body>
<div id="editor' class='modal superb' custom-data='simple-code'></div>
</body>

To get all the attributes of the editor div, someone can:

editor_attributes = get_attributes_g(germanium, '#editor')

assert editor_attributes['class'] == 'modal superb’
assert editor_attributes['id'] == 'editor'
assert editor_attributes['custom-data'] == 'simple-code'

get_style(selector, name)
Description

Returns a single CSS attribute value for the element that is matched by the selector.

Signature

get_style(selector, @
name) @

@ selector - What element to return the CSS property for. See the Germanium Selectors, to learn
about how you can easily locate the element you want your action to be triggered against.

12

@ name - The name of the property to return, in camel case.

If the selector is a WebElement instance, the filtering of only_visible will not be used, and the style
property from the given element will still be returned, even if the element is not visible.

Sample

get_style('input.red-border', 'borderTopWidth")
get_web_driver()
Description

Return the WebDriver instance the global Germanium was built around.

Signature

def get_web_driver()
Sample

wd = get_web_driver()
get_germanium()

Description

Returns the currently running Germanium instance, or None if no instance was opened using
open_browser ().

Signature
def get_germanium()

Please see the Germanium API Documentation to find out what is available on the
germanium.driver.GermaniumDriver instance.

Sample

g = get_germanium()

13

highlight(selector, show_seconds=2)

Description

Highlights by blinking the background of the matched selector with a vivid green for debugging
purposes.

Signature

def highlight_g(selector, @
show_seconds=2, @
*args,
console=False) ®

@ selector - What element to alternate the background for. See the Germanium Selectors, to learn
about how you can easily locate the element you want your action to be triggered against.

@ show_seconds - How many seconds should the element blink.

® console - Should the messages be logged to the browser console.

In case the element that is found doesn’t exist, or is not visible, a notification alert will pop up, with
information of whether the element was not found or since it’s not visible can’t be highlighted.

In case console is set to True then the alert will not be displayed, but instead only the console.log (or
console.error) of the browser will be used for notifying elements that are not visible, or that can
not be found.

Sample

highlight('.hard-to-see-item")
def S(*argv, **kwargs)
Description

Returns a deferred locator, using the *S uper locator.

Signature
def S(selector, strategy="default')
Sample

element = S('#editor').element()

14

def iframe(target, keep_new_context = False)

Selects the current working iframe with the target name.

@iframe("editor")
def type_keys_into_editor(keys):
type_keys(keys)

type_keys_into_editor('hello world') # will switch the iframe to 'editor' and back
click(Button("Save")) # iframe is 'default'

wait(closure, while not=None, timeout=10)
Description

A function that allows waiting for a condition to happen, monitoring also that some other
conditions do not happen.

In case the timeout expires, or one of the while_not conditions matches until the closure is not yet
matching then throws an exception.

Callables of both closure and the while_not are recursively resolved until a non callable trueish
value is returned.

Signature

def wait(closure, @
while_not=None, @
timeout=10) ®

@ closure is either a callable, either an array of callables. If any of them passes, the wait finished
successfuly.

@ while_not is either a callable, either an array of callables. If any of them fail, the wait throws an
exception.

® timeout expressed in seconds.
Sample

Since selectors are callables, they can be used as parameters for wait.

wait(Text("document uploaded successfully"),
while_not = Text("an error occurred"))

Because callables are recursively resolved, they can be used as strategies for waiting:

15

def ButtonOrLink():
if some_condition:
return Link

return Button

wait(ButtonOrLink)
This is roughly equivalent to:

def ButtonOrLink():
if some_condition:
return Link().exists()

return Button().exists()

wait(ButtonOrLink)

waited(closure, while not=None, timeout=10)
Description

A function that allows waiting for a condition to happen, monitoring also that some other
conditions do not happen.

In case the timeout expires, or one of the while_not conditions matches, before the closure matched
then it returns None.

Otherwise it returns the value that the closure returned.
Signature
def waited(closure, @®

while_not=None, @
timeout=10) ®

@ closure is either a callable, either an array of callables. If any of them passes, the wait finished
successfuly.

@ while_not is either a callable, either an array of callables. If any of them fail, the wait throws an
exception.

® timeout expressed in seconds.

Sample

click(waited(Button("0k")))

16

Germanium Selectors and Locators

Selector objects are similar to String values, that describe how an element can be found in the
current page, while Locator objects are the implementation of actual aglorithms that find them. A

parallel can be made between the string "div.custom-text", and the
webdriver.find_element_by_css() function. Selectors specify what you want to find in the page, and
locators make sure you find them. It’s the combination of them,

webdriver.find_element_by_css("div.custom-text") that will return the actual DOM Element to
interact with.

Selectors are in the end text strings. Locators evaluate them finding elements in the browser.
In all the API calls, where selector is specified, the selector is actually one of:

1. a string selector,
2. an object that inerits from AbstractSelector (such as Text, Element, Image, etc.),
3. a WebDriver WebElement,

4, alocator,
5

. alist of any of the above.

Since selectors offer Positional and DOM filtering, point 1 and 2 will cover 99% of your test cases.

Locators Overview

Locators are algorithms that are are able to find elements against the current browser. They are
registered on the Germanium instance, and by default, Germanium comes with three locators
registered: "xpath", "css" and "js". These are implemented in XPathlLocator, CssLocator and
Jslocator respectively, from the germanium.locators package. Locators use selectors to find web
elements. To create a locator you need a Germanium instance, and a string specifying the selector

passed to the locator itself.

These locators all extend a base class named DeferredLocator. This class holds the reference to the
Germanium object, and offers utility methods to actually fetch the elements, check if such elements
exist, or retrieveing their text.

Note, that the locators don’t immediately find the elements. Explicit calls muse be made to:

o element()
o element_list()

 the locator itself with (), (since the locator is a callable and will return the element_list)

from germanium.util import wait

label_divs_locator = germanium.S('.label') @
wait(label _divs_locator) @

17

@ This will return a CsslLocator.

@ Since the locator is a callable, we can wait on it

Alocator is always constructed with two things: the Germanium instance it will use to attept at finding
the elements, and a string expression that will be used for finding. Note that you should never
manually instantiate the locator, but you should use the super locator (the S function). This function
will pass both the germanium instance, and the selector itself.

You can, and should, use the strategy parameter or the selector prefix when using the S() builder
function:

germanium.S('#testDiv', strategy='css')

or prefixing the string itself with the strategy name:

germanium.S('css:#testDiv')

Optionally a custom locator can be defined that extends the base class DeferredlLocator.
DeferredLocator contains a reference to a Germanium object and includes utility methods to get web
elements.

© DeferredLocator

o _call_(): list<WebElement>
° /_visible: boolean) :

o element_ist(index: int, only_visible: boolean) : list<WebElement>|WebElement
o exists(only_visible: boolean) : boolean

o not_exists(only_visible: boolean) : boolean

o text(only_visible: boolean) : string

< _find_element(only_visible: boolean) : WebElement

& find_element_st(only_visible: boolean) : list<WebElement>

(©) csstocator (©) xatiocator (©) 3stocator

& _find_element(only_visible: boolean) : WebElement & _find_element(only_visible: boolean) : WebElement & _find_element(only_visible: boolean) : WebElement
& _find_element_list(only_visible: boolean) : list<WebElement> & _find_element_ist(only_visible: boolean) : list<WebElement> & _find_element_list(only_visible: boolean) : list<WebElement>

String Selectors

A string selector is a selector that can specify what locators to be used. Implicitly, the selector is
either an XPath if it starts with "//", either a CSS selector, if there is no identifier prefix ("name:---").

A string selector can also specify its locator strategy, by prefixing the selector with the locator
strategy name. Currently registered into Germanium are:

CSss

selector = "ess:div#customID"

or without the css prefix, since the string it's
not starting with //
selector = "div#customID"

xpath

18

selector = "xpath://div[@id="customID"']"
or without the xpath prefix, since the string it's

starting with //
selector = "//div[@id="customID']"

js

selector = "js:return [document.getElementById('customID')];"

Selectors Overview

All Selector objects in Germanium inherit from germanium.selector.AbstractSelector, which define
only a single required method get_selectors() that returns a list of string selectors. The list item
can have different locator strategies:

class AbstractSelector(object):
...
def get_selectors(self):
raise Exception("Abstract class, not implemented.") @

... positional, and parent-child filtering methods

All the Selector objects return a list of strings, that define how the element, or the multiple elements
will be found by the given locator.

Writing Custom Selectors

You can write a new selector by extending the AbstractSelector class and implementing the
get_selectors method, that returns an array of selectors to be searched in the document.

19

@ AbstractSelector

method to implement
List<string> get_selectors()

positional filtering
PositionalFilterSelector left_of(selector)
PositionalFilterSelector right_of(selector)
PositionalFilterSelector below(selector)
PositionalFilterSelector above(selector)

parent/child filtering
InsideFilterSelector inside(selector)
InsideFilterSelector outside(selector)
InsideFilterSelector containing(selector)
InsideFilterSelector containing_all(selector)
InsideFilterSelector without_children()

(o]

Q000

0000

@ PositionalFilterSelector

@ InsideFilterSelector

o PositionalFilterSelector left_of(selector)
o PositionalFilterSelector right_of(selector)
o PositionalFilterSelector below(selector)
o PositionalFilterSelector above(selector)

20

o InsideFilterSelector inside(selector)

o InsideFilterSelector outside(selector)

o InsideFilterSelector containing(selector)

o InsideFilterSelector containing_all(selector)
o InsideFilterSelector without_children()

Selectors Positional Filtering

Germanium provides the following methods directly on top of AbstractSelector to enable positional
filtering: left_of(selector), right_of(selector), below(selector), above(selector), that are from the
set of found web elements, by using reference elements, and ignoring elements left_of, right_of,
below or above the references. These filters can be used to filter otherwise false positive matches
when selecting.

Multiple filters can be chained for the same selector, for example someone can:

click(Link("edit")
.below(Text("User Edit Panel"))
.right_of(Text("User 11")))

This will find a link that contains the label edit, that is positioned below the text User Edit Panel
and is to the right of the text User 11.

selector.left of(other selector)

Description

Make a selector that will return only the items that are left of all the elements returned by the
other_selector.

Signature
def left_of(self, other_selector)
Sample

click(Input().left_of(Text("User")))

selector.right_of(other_selector)

Description

Make a selector that will return only the items that are right of all the elements returned by the
other_selector.

Signature
def right_of(self, other_selector)

Sample

21

click(Link("edit").right_of(Text("User 11")))

selector.above(other _selector)

Description

Make a selector that will return only the items that are above all the elements returned by the
other_selector.

Signature
def above(self, other_selector)

Sample
click(Link("logout").above("div.toolbar"))

selector.below(other selector)

Description

Make a selector that will return only the items that are below all the elements returned by the
other_selector.

Signature
def below(self, other_selector)
Sample

click(Button("edit").below(Text("entry 5")))

22

Selectors DOM Filtering

DOM Filtering selectors work by selecting only specific nodes in relations with other nodes in the
DOM.

selector.containing(selector..)
Description
Matches nodes that contain the other XPath/CSS selectors.

Signature
def containing(self, selector..)
Sample

row = Element("tr").containing(
Element("td", contains_text="User 1"),
Element("td", contains_text="User 2")
).element()

This will match a <tr> element that contains any of the <td> elements with the "User 1" or "User 2"
text.

selector.containing all(selector..)

Description
Matches nodes that contain all the given selectors inside their tree structure.

Signature
def containing_all(selector..)
Sample

row = Element("tr").containing_all(
Element("td", contains_text="user@sample.com"),
Text("User A")
).element()

This will match a <tr> element that contains a <td> with the text user@sample.com and some other
text, named "User A"

23

selector.inside(selector..)

Description
Matches nodes that are inside any of the other selectors.

Signature
def inside(self, selector)
Sample

error_message = Element("div", css_classes="label") \
.inside(Element("div", css_classes="error-dialog"))

selector.outside(selector..)

Description

Matches nodes that are outside any of the given selectors (don’t have the given selectors as a
parent.

Signature
def outside(self, selector)

Sample

For example to check if all the "p "aragraphs in the page are inside "div s, we can:
assert Element("p").outside("div").not_exists()

selector.without children()

Description
Matches nodes that have no children.

Signature
def without_children(self)

Sample

24

Given this selector:

Element('div', css_classes="test').without children()

and HTML:

<div>
<div class="test">a</div>
<div class="test"><node/></div>
<div class="test"></div> <!-- only this node will be matched -->

<div class="test"><node>mix</node></div>
<div>

only the third <div> child element will be matched.

25

Germanium Selectors in Static Contexts

Selectors are neat since we can reuse them, and offer a clean separation between finding the
elements and inspecting them, but they also offer a few utility methods to aid you in removing that
one extra call to the S super locator.

For example instead of writing:
S(Button('0Ok')).element()
you can write:
Button('Ok').element()
but you need to have a germanium instance already opened, or manually specify it in the element call.

Button('Ok").element(germanium=my_custom_ge_instance)

selector.element()

Description

This function allows fetching the first element from the Germanium instance, for which the current
selector matches.

In case the germanium instance is not specified it will use the static instance from
germanium.static.get_germanium().

Signature

def element(self, *argv, germanium=None, only_visible=True)
Sample

Button('Ok').element()

selector.element list()

Description

This function allows fetching the element list from the Germanium instance, for which the current
selector matches.

26

In case the germanium instance is not specified it will use the static instance from
germanium.static.get_germanium().

Signature

def element_list(self,
index=None, @
*arqv,
germanium=None, @
only_visible=True) ®

@ index - When present, the element with the given index will be returned instead of the full list of
elements.

@ germanium - What instance of germanium to use. If None use germanium.static.get_germanium().

® only_visible - If only the visible elements should be selected. Defaults to True across Germanium.

Sample

Element('li").element 1list()

selector.exists()
Description
This function allows checking if there is at least one element matching the current selector.

In case the germanium instance is not specified it will use the static instance from
germanium.static.get_germanium().

Signature
def exists(self, *argv, germanium=None, only_visible=True)
Sample

wait(Text('data saved successfuly').exists)

selector.not_exists()

Description

This function allows checking if there is no element matching the current selector.

In case the germanium instance is not specified it will use the static instance from

germanium.static.get_germanium().

27

Signature

def not_exists(self, *arqgv, germanium=None, only_visible=True)
Sample

wait(Text('error occurred').not_exists)

selector.text()

Description
This function allows returning the text of the first element that matches the current selector.

In case the germanium instance is not specified it will use the static instance from
germanium.static.get_germanium().

Signature
def text(self, *argv, germanium=None, only_visible=True)
Sample

assert Css('#messages').text() == 'data persisted’

28

Utility Selectors

Utility selectors are provided so you can use the positional filtering capabilities of the selectors. For
example:

click(Css('.tree-plus-icon').left_of(Text('Item 15")))

The reason behind it is that you can’t use positional filtering directly on the string themselves.
String objects have to be recast to another object type (in this case, AbstractSelector) that supports
the positional filtering methods.

click('.tree-plus-icon'.left_of(Text('Item 15'))) # throws exception

@ AbstractSelector

@ Css @ XPath @ JsSelector @ AnyOfSelector

Css(locator)

A selector that finds the given CSS expression.

XPath(locator)

A selector that finds the given XPath expression.

JsSelector(code)

A selector that finds an element by evaluating the given JavaScript code. arqguments[@] is the element
used for subtree searches, and can be null if searches are made for the full document.

AnyOfSelector(selectors...)

A container selector that denotes an element that can be represented in multiple ways. The
selectors passed into the constructor can also have filtering.

29

Provided Selectors

Provided selectors are just classes that are generally useful for testing, simple things such as
buttons, links or text.

The most basic of them is called Element. There are a lot of more specific selectors on top of that, for
“Input s, or "Link's.

Element(tag_name=None, ...)

A selector that finds an element by looking at its XPath.
Parameters:

 tag_name - the html tag name to find (e.g. div, span, 11);

* index - if specified, is the 1 index based result;

 id - If it’s specified, is the id attribute of the element;

» exact_text - if specified, the exact text the element must have;

» contains_text - if specified, the exact text the element should contain;

» css_classes - the CSS classes that the element must have (either as a string, or list of “string"s);

» exact_attributes - attributes with their values that the element must have (dict, keys for
attribute names, values for expected values);

» contains_attributes - attributes that contain the given values (dict, keys for attribute names,
values for strings that the attribute values must contain);

» extra_xpath - extra xpath to be added to the expression, to the previously built expressions.
If the index is used, the whole expression is wrapped in parenthesis, and the index is applied to the

whole result. In case you want multiple sub-children, use extra_xpath to fetch the elements.

S(Element('div',
contains_text='error has occured',
css_classes=['error-message']))

This will find a div that contains the text error has occured and has also a CSS class attached to it
named error-message.

Button(search_text = None, text = None, name = None)

Just a selector that finds a button by its label or name:

This selector will find simultaneously both input elements that have the type="button", but also
button elements.

* some of the text, in either the value attribute if it’s an input, or the text of the button (

30

search_text)
* the exact text, either the value attribute if it’s an input, or its text if it’s an actual button (text)

¢ its form name (name)
germanium.S(Button("0k"))
Input(input_name)
Just a selector that finds an input by its name.
germanium.S(Input('q"))
InputText(input_name)
Just a selector that finds an input with the type text by its name.

germanium.S(InputText('q"))

Link(search_text, text, search_href, href)

Just a selector that finds a link by either:

* some of its text content (search_text)
* its exact text content(text)
» some of its link location (search_href)

« jts exact link location(href)

To match the first link that contains the 'test’ string, someone can:

germanium.S(Link("test"))

Of course, the text and href search can be combined, so we can do, in order to find a link that is on
the ciplogic.com website containing the text testing:

germanium.S(Link("testing", search_href="http://ciplogic.com"))

Text(text, exact=False, trim=False)

Just a selector that finds the element that contains the text in the page.

31

germanium.S(Text("some text"))

The selector can find the text even in formatted text. For example the previous selector would
match the parent div in such a DOM structure:

<div>
some text
</div>

The options of exact and trim can be used to find elements even if they are padded, or only the
elements that have the exact text that was given for searching.

32

Point Support

While Germanium does support IE8+, point support is supported only from
WARNING IE9+. This is the only Germanium API that is not supported in IE8, and is
actually caused by Selenium itself.

In Germanium, point actions are supported for all the mouse actions, and can be used instead of
selectors, namely:

1. click()

2. right_click()
3. double_click()
4. hover()

5

. drag_and_drop()

Point(x, y)

Points are not selectors and don’t specify an exact element, but rather as the name implies a location
on the screen where we want to interact. The point location is computed from the top/left of the
page itself, and is specified with x and y coordinates.

@ Point

o X :number
o Y : number

© adjust_x(x : number) : Point
© adjust_y(y : number) : Point

Points can be adjusted, so you can have the value changed without always summing up values in a
one liner.

In order to easily obtain points, a utility class is also provided that can obtain points relative to the
bounding box of an element. The corners, middle of the top/left/right/bottom segments, and the
center are offered as points. The class is named Box, and its constructor accepts a selector as an
argument.

Box(selector)

33

© =
Box(selector)

................................. points methods
top_left(adjust_x, adjust_y) : Point

top_center(adjust_x, adjust_y) : Point

top_right(adjust_x, adjust_y) : Point

middle_left(adjust_x, adjust_y) : Point
middle_right(adjust_x, adjust_y) : Point
bottom_left(adjust_x, adjust_y) : Point
bottom_center(adjust_x, adjust_y) : Point
bottom_right(adjust_x, adjust_y) : Point

center(adjust_x, adjust_y) : Point

................................... size methods
width(self) : number

height(self) : number

left(self) : number

right(self) : number

top(self) : number

bottom(self) : number

............................. box sizes refresh
get_box(self) : Box

|
|
:«Uses»
|

Y
@ Point

o X :number
o Y : number

o adjust_x(x : number) : Point
o adjust_y(y : number) : Point

A Box instance will keep the sizes the first time it will be called, because we don’t want to call it
every time. In order to refresh it, the get_box() method is offered that will refresh the Box
coordinates with the new data.

In wait conditions you can chain it:

box = Box(Css('.resizing-div'))
wait(lambda: box.get_box().width() == 100))

Since points are not selectors, you can click two pixels right of an element, without exactly
specifying the target element like so:

click(Box('span.custom-text').middle_right(2, @))

To click two pixels left of an element, we can just adjust with a negative value:

click(Box('span.custom-text').middle_left(-2, 0))

Assuming a canvas is more than 10x10 pixels, we could also do a drag and drop from the top left

corner, to the bottom right, keeping a 5 pixel margin:

34

canvas_box = Box('canvas.drawing')
drag_and_drop(canvas_box.top_left(5, 5),
canvas_box.bottom_right(-5, -5))

35

Germanium Keys Support

This section details on how to type keys better, without a headache.

Regular Typing

In general when typing keys, for example for form fields, the easiest way of doing it is to just type
the actual keys to be pressed. For example to type the user name into a form field you can:

type_keys('John', Input('firstname'))

This will in turn just type the keys ["]", "o", "h", "n"] into the input that has a name attribute
equal to "firstname". An email looks equally fascinating:

type_keys('john.doe@example.com', Input('email'))
Let’s start the more interesting examples.

Special Keys
Special keys such as ENTER, are available by just escaping them in < and > characters, e.g. <ENTER>.

For example to send TAB TAB ENTER someone could type:

type_keys("<tab*2><enter>")

Using * in special keys or combined macros, allows you to type the same key, or key

TIP
combination multiple times.

Now you might wonder, why is it <enter> and not <ENTER>? Or <cr>? Or its bigger brother <CR>? Or
just <Enter>. Actually they all resolve to the same key, that is the ENTER. The same holds true for
 vs <delete>, or <bs> vs <backspace>, etc. They will resolve to DELETE, BACKSPACE, etc. as expected.

Combo Presses

Also, in the typing of the keys, combined macros such as <ctrl-a> are automatically understood as
CTRL+A and translated correctly as an action chain.

Macro keys can be written such as:

o SHIFT: S, SHIFT
* CONTROL: C, CTL, CTRL, CONTROL
o META: M, META

36

Also germanium is smart enough, so the position of the macro key matters, thus <s-s> is equivalent
to <shift-s> and thus interpreted as SHIFT+s, and not s+s or SHIFT+SHIFT.

Press-Release Key

In order to start pressing a key, and release it later, while still typing other keys, the ! and » symbols
can be used. For example to type some keys with SHIFT pressed this can be done:

type_keys("<!shift>shift is down<”Ashift>, and now is up.")

The ! looks like a finger almost pressing the button, and the ” is self explanatory: the

TIP
finger released the given button.

37

Germanium API Documentation

There are three kinds of functions that are provided for easier support inside the browsers:

1. decorator:
. @iframe
2. germanium instance functions:
o S, super locator
o js, execute_script
. take_screenshot
o load_script
3. germanium instance attributes:
. iframe_selector
4. utility functions:
- type_keys_g
. click_g
. double_click_g
. right_click_g
- hover_g
. select_g
. deselect_g
. get_attributes_g
. get_value_g
o get_text_g
. highlight_g

o Wait

@iframe - germanium iframe decorator

@iframe(name, keep_new_context=False)

Switch the iframe when executing the code of the function. It will use the strategy provided when
the Germanium instance was created.

For example if we would have an editor that is embedded in an IFrame, and we would want to call
the saving of the document, we could implement that such as:

38

@iframe("default")
def close_dialog(germanium):
germanium.S(Button("0k").below(Text("Save dialog"))).element().click()

@iframe("editor")
def save_document(germanium):

germanium.S('#save-button').element().click()
close_dialog(germanium)

The @iframe decorator is going to find the current context by scanning the parameters of the
function for the Germanium instance. If the first parameter is an object that contains a property
named either: germanium or _germanium then this property will be used.

germanium Instance Functions

The GermaniumDriver is a simple instance that decorates an existing WebDriver:

@ GermaniumDriver

web_driver
1

@ WebDriver

All the attributes that are not defined on the GermaniumDriver instance, are searched into the
germanium.web_driver one. For example calling:

print(germanium.title)

Will actually result in fetching the title from the web_driver instance that is used by the
GermaniumDriver.

Constructor GermaniumDriver(web_driver, ..)

Constructs a new GermaniumDriver utility object on top of the given WebDriver object.

GermaniumDriver (web_driver,
iframe_selector=DefaultIFrameSelector(),
screenshot_folder="screenshots",
scripts=list())

The only required parameter is the web_driver argument, that must be a WebDriver instance.

39

iframe_selector

The iframe_selector specifies the strategy to use whenever the iframe will be changed by the
@iframe decorator. This class should have a method named select_iframe(self, germanium,
iframe_name), or a method that has two parameters (germanium, iframe_name) can be provided and it
will be wrapped into a decorator class by Germanium itself.

Germanium uses "default" for the switch_to_default_content.

The default implementation is:

class DefaultIFrameSelector(object):

nmnn

An implementation of the IFrameSelector strategy that does nothing.
def select_iframe(self, germanium, iframe_name):
if iframe_name != "default":
raise Exception("Unknown iframe name:

%s'. Make sure you create an IFrame
Selector "
"that you will pass when creating the GermaniumDriver,
e.g.:\n"
"GermaniumDriver(wd, iframe_selector=MyIFrameSelector())")

germanium.switch_to_default_content()
return iframe_name

This can easily be changed so depending on the iframe_name it will do a switch_to_frame on the
germanium object.

class EditorIFrameSelector(object):
def select_iframe(self, germanium, iframe_name):

if iframe_name == "default":
germanium.switch_to_default_content()
elif iframe_name == "editor":

editor_iframe = germanium.find_element_by_css_selector('iframe")
germanium.switch_to_frame(editor_iframe)

return iframe_name

In case you don’t want a full class, you can pass also a callable that will be invoked with two
parameters germanium and iframe_name:

40

def select_iframe(germanium, iframe_name):

if iframe_name == "default":
germanium.switch_to_default_content()
elif iframe_name == "editor":

editor_iframe = germanium.find_element_by_css_selector('iframe")
germanium.switch_to_frame(editor_iframe)

return iframe_name

So when invoking the GermaniumDriver someone can:

GermaniumDriver(web_driver,
iframe_selector=select_iframe)

screenshot_folder

The folder where to save the screenshots, whenever take screenshot is called. It defaults to
"screenshots", so basically a local folder named screenshots in the current working directory.

scripts

A list of files with JavaScript to be automatically loaded into the page, whenever either get(),
reload_page() or wait_for_page_to_load() is done.

germanium.S(selector, strategy?)

S stands for the super locator, and returns an object that can execute a locator in the current iframe
context of germanium. The letter S was chosen since it is looking very similar to jquery’s §.

The first parameter, the selector, can be any of the selector objects from the germanium.selectors
package, or a string that will be further interpreted on what selector will be used.

For example to find a button you can either:

germanium.S(Button('0K"))

or using a CSS selector:

germanium.S("input[value'OK'][type="button']")

or using a specific locator:

41

selectors.adoc

implicit strategy detection, will match XPath, due to // start
germanium.S("//input[@value="0K"J[@type="button']")

or explicit in-string strateqy:
germanium.S("xpath://input[@value="0K"][@type="button']")

or explicit strategy:
germanium.S("//input[@value="0K'][@type="button']", "xpath")

The selectors approach is recommended since a selector find will match either an html input
element of type button, either a html button element that has the label OK.

The S locator is not itself a locator but rather a locator strategy. Thus the S locator will choose:

1. if the searched expression starts with // then the xpath locator will be used.

will find elements by XPath
germanium.S('//*[contains(@class, "test")]');

1. else the css locator will be used.

will find elements by CSS
germanium.S('.test")

The S function call will return an object that is compatible with the static wait_for command.

germanium.js(code), germanium.execute_script(code)

Execute the given JavaScript, and return its result.

germanium.js('return document.title;")

TIP The js is just an alias for the execute_script function

germanium.take_screenshot(name)

Takes a screenshot of the browser and saves it in the configured screenshot folder.

will save a screenshot as ‘screenshots/test.png’
germanium.take_screenshot('test")

germanium.load_script(filename)

Loads the JavaScript code from the file with the given name into the browser.

42

selectors.adoc

germanium.load_script('jquery.js")

germanium Instance Attributes

Currently there is only one attribute, namely the iframe_selector, that allows changing the current
iframe selection strategy for the given instance.

As in the constructor, it supports both the class, or the callable as values for assignment.

def new_iframe_selector(germanium, iframe_name):
...

old_ifame_selector = get_germanium().iframe_selector
get_germanium().iframe_selector = new_iframe_selector

This is useful for reusing the Germanium instance across tests, without the need to recreate it just
because you need another iframe_selector strategy.

germanium Utility Functions

Utility functions for Germanium instances.

type_keys_g(germanium, keys_typed, element=None, delay=0)
Type the current keys into the browser, optionally specifying the element to send the events to,
and/or delay between keypresses.

type_keys_g(germanium, "send data<cr>but <!shift>not<Ashift> now.")

Special keys such as ENTER, are available by just escaping them in < and > characters, e.g. <ENTER>.
For example to send TAB TAB ENTER someone could type:

type_keys_g(germanium, "<tab*2><enter>")

Using * in special keys or combined macros, allows you to type the same key, or key

TIP o . .
combination multiple times.

Also, in the typing of the keys, combined macros such as <ctrl-a> are automatically understood as
CTRL+A and translated correctly as an action chain.
Macro keys can be written such as:

o SHIFT: S, SHIFT
* CONTROL: C, CTL, CTRL, CONTROL

43

o META: M, META

Also germanium is smart enough, so the position of the macro key matters, thus <s-s> is equivalent
to <shift-s> and thus interpreted as SHIFT+s, and not s+s or SHIFT+SHIFT.

In order to start pressing a key, and release it latter, while still typing other keys, the ! and *
symbols can be used. For example to type some keys with SHIFT pressed this can be done:

type_keys_g(germanium, "<!shift>shift is down<Ashift>, and now is up.")

The ! looks like a finger almost pressing the button, and the ” is self explanatory: the

TIP
finger released the given button.

click_g(germanium, selector)

Perform a single click mouse action.

click_g(germanium, Button("Cancel").below(Text("Delete file?")))

double_click_g(germanium, selector)

Perform a double click mouse action.

double_click_g(germanium, "a.test-label")

right_click_g(germanium, selector)

Perform a mouse right click. Also known as a context menu click.

right_click_g(germanium, webdriver_element)

hover_g(germanium, selector)

Hover the given element.

hover_g(germanium, 'a.main-menu")

select_g(germanium, selector, text=None, *argv, value=None, index=None)

Select one or more elements in a HTML <select> element. Can select the elements by either, text
values, actual values inside the <option>, or by index.

44

select('select#icountry', value="at')
select('select#fmultivalueSelect', index=[1,3,7,8])

deselect_g(germanium, selector, text=None, *argv, value=None,
index=None)

Deselects one or more elements in a HTML <select> element. Can deselect the elements by either,
text values, actual values inside the <option>, or by index.

deselect('selectfimultivalueSelect', index=[7,8])

get_attributes_g(germanium, selector)

Return all the attributes of the element matched by the selector as a dictionary object.

For example for this HTML:

<body>
<div id="editor' class='modal superb' custom-data="simple-code'></div>
</body>

To get all the attributes of the editor div, someone can:

editor_attributes = get_attributes_g(germanium, '#editor')

assert editor_attributes['class'] == 'modal superb'
assert editor_attributes['id'] == 'editor'
assert editor_attributes['custom-data'] == 'simple-code’

get_value_g(germanium, selector)

Returns the current value of the element matched by the selector. Normally for inputs it’s just the
string value.

In case the selector matches a multiple select, will return an array with the values that are
currently selected.

assert get_value_g(germanium, 'select#multivalueSelect') == [1, 3]

get_text_g(germanium, selector)

Returns the current text of the element matched by the selector. This will work also for WebElement
instances that are passed as selector values even if they are not visible.

45

highlight_g(germanium, selector)

Highlights the given selector on the germanium instance for debugging purposes. This will make
the element blink in the actual browser for easy visual identification.

46

	Germanium v2.0.11
	Table of Contents
	Installation
	Germanium Drivers
	GERMANIUM_DRIVERS_FOLDER
	GERMANIUM_USE_PATH_DRIVER
	GERMANIUM_USE_IE_DRIVER_FOR_PLATFORM

	Germanium Static
	open_browser()
	close_browser()
	go_to(url)
	type_keys(keys, selector, delay)
	click(selector_or_point)
	hover(selector_or_point)
	double_click(selector_or_point)
	right_click(selector_or_point)
	drag_and_drop(from_selector_or_point, to_selector_or_point)
	select(selector, text?, index?, value?)
	deselect(selector, text?, index?, value?)
	select_file(selector, file_path, path_check=True)
	parent_node(selector)
	child_nodes(selector, only_elements=True)
	get_value(selector)
	get_text(selector)
	get_attributes(selector)
	get_style(selector, name)
	get_web_driver()
	get_germanium()
	highlight(selector, show_seconds=2)
	def S(*argv, **kwargs)
	def iframe(target, keep_new_context = False)
	wait(closure, while_not=None, timeout=10)
	waited(closure, while_not=None, timeout=10)

	Germanium Selectors and Locators
	Locators Overview
	String Selectors
	Selectors Overview
	Writing Custom Selectors

	Selectors Positional Filtering
	selector.left_of(other_selector)
	selector.right_of(other_selector)
	selector.above(other_selector)
	selector.below(other_selector)

	Selectors DOM Filtering
	selector.containing(selector..)
	selector.containing_all(selector..)
	selector.inside(selector..)
	selector.outside(selector..)
	selector.without_children()

	Germanium Selectors in Static Contexts
	selector.element()
	selector.element_list()
	selector.exists()
	selector.not_exists()
	selector.text()

	Utility Selectors
	Css(locator)
	XPath(locator)
	JsSelector(code)
	AnyOfSelector(selectors…​)

	Provided Selectors
	Element(tag_name=None, …​)
	Button(search_text = None, text = None, name = None)
	Input(input_name)
	InputText(input_name)
	Link(search_text, text, search_href, href)
	Text(text, exact=False, trim=False)

	Point Support
	Point(x, y)
	Box(selector)

	Germanium Keys Support
	Regular Typing
	Special Keys
	Combo Presses
	Press-Release Key

	Germanium API Documentation
	@iframe - germanium iframe decorator
	germanium Instance Functions
	germanium Instance Attributes
	germanium Utility Functions

